官方网站:http://www.springer.com/mathematics/dynamical+systems/journal/11819
投稿网址:https://www.springer.com/mathematics/dynamical+systems/journal/11819
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1560-3547%5BISSN%5D
规则混沌动力学(RCD)是国际上发表动力学理论及其应用研究论文的期刊。该杂志植根于莫斯科数学与力学学院,成功地结合了经典问题、现代数学技术和该领域的突破。常规的规则和混沌动力学欢迎建立原始结果的论文,其特点是严格的数学设置和证明,并解决实际问题。除了原创的研究论文,该杂志还出版评论文章、历史和论辩文章,以及过去几个世纪有影响力的科学家的著作的翻译,这些著作以前都没有英文版本。除了定期发行的问题,定期和混沌动力学也出版了专门针对特定主题和事件的特殊问题,在动态系统的世界。本杂志特别注意:完全可积的非线性系统不可积与混沌理论经典与天体力学涡动力学流固相互作用非完整力学刚体动力学稳定和控制应用于生物动力学,运动和机器人。
Regular and Chaotic Dynamics (RCD ) is an international journal publishing research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. RegularRegular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to original research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, Regular and Chaotic Dynamics also publishes special issues devoted to particular topics and events in the world of dynamical systems.In this journal, special attention is given to:Exactly integrable nonlinear systemsNonintegrability and chaos theoryClassical and celestial mechanicsVortex dynamicsFluid-solid interactionNonholonomic mechanicsDynamics of rigid bodiesStability and controlApplications to biodynamics, locomotion, and robotics.
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
数学 | 3区 | MATHEMATICS, APPLIED 应用数学 MECHANICS 力学 PHYSICS, MATHEMATICAL 物理:数学物理 | 3区 3区 3区 | 否 | 否 |
JCR分区等级 | JCR所属学科 | 分区 | 影响因子 |
Q2 | MATHEMATICS, APPLIED | Q2 | 1.667 |
PHYSICS, MATHEMATICAL | Q2 | ||
MECHANICS | Q4 |
* 请认真填写需求信息,学术顾问24小时内与您取得联系。