官方网站:http://link.springer.com/journal/10801
投稿网址:https://www.editorialmanager.com/jaco/default.aspx
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0925-9899%5BISSN%5D
代数组合学杂志发表论文,其中组合学和代数互动在一个重要和有趣的方式。这种相互作用可能通过使用代数方法研究组合结构,或将组合方法应用于代数问题来实现。组合学可以是枚举的,也可以涉及拟阵、波塞特、多边形、代码、设计或有限几何。代数可以是群论,表示论,格论或者交换代数,举几个例子。这本杂志为这门学科提供了一个理想的资源,为组合学的研究人员,以及对组合结构有浓厚兴趣的数学和计算机科学家提供了一个关于代数组合学的论文的单一论坛。
The Journal of Algebraic Combinatorics publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems. The combinatorics might be enumerative, or involve matroids, posets, polytopes, codes, designs, or finite geometries. The algebra could be group theory, representation theory, lattice theory or commutative algebra, to mention just a few possibilities.This journal provides an ideal resource to the subject, providing a single forum for papers on algebraic combinatorics for researchers in combinatorics, and mathematical and computer scientists with a strong interest in combinatorial structure.
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
数学 | 3区 | MATHEMATICS 数学 | 3区 | 否 | 否 |
JCR分区等级 | JCR所属学科 | 分区 | 影响因子 |
Q3 | MATHEMATICS | Q3 | 0.963 |
* 请认真填写需求信息,学术顾问24小时内与您取得联系。