官方网站:http://www.worldscientific.com/worldscinet/jktr
投稿网址:http://www.editorialmanager.com/jktr/login.asp
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0218-2165%5BISSN%5D
本杂志旨在为纽结理论的新发展,特别是在纽结理论与数学和自然科学的其他方面之间建立联系的发展提供一个论坛。由于学科的性质,我们的立场是跨学科的。绳结理论作为一门核心的数学学科,受到许多形式的推广(虚拟绳结和连杆、高维绳结、其它流形中的绳结和连杆、非球面绳结、类似于打结的递归系统)。结点生活在一个更广泛的数学框架中(三维和高维流形分类、统计力学和量子理论、量子群、高斯码组合学、组合学、算法和计算复杂性、拓扑和代数结构的范畴理论和范畴化、代数拓扑、拓扑量子场论)。将发表的论文包括:节点与连杆理论的新研究及其应用相关领域的新研究;教程和复习论文。通过这本杂志,我们希望能很好地服务于结理论和拓扑相关领域的研究人员,研究人员在他们的工作中使用结理论,科学家有兴趣了解当前在结理论及其分支的工作。
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).Papers that will be published include:new research in the theory of knots and links, and their applications;new research in related fields;tutorial and review papers.With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.
* 请认真填写需求信息,学术顾问24小时内与您取得联系。