随机矩阵理论(RMT)有着悠久而丰富的历史,特别是近年来,在数学、科学和工程的许多不同领域都有重要的应用。RMT的范围和应用包括经典分析、概率论、大数据统计分析,以及与图论、数论、表示论的联系,以及数学物理的许多领域。随机矩阵理论的应用不断涌现,欢迎新应用。一些例子是正交多项式理论、自由概率、可积系统、增长模型、无线通信、信号处理、数值计算、复杂网络、经济学、统计力学和量子理论。本刊还将考虑和出版专门讨论当前感兴趣的单一主题的特刊。
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.Special issues devoted to single topic of current interest will also be considered and published in this journal.
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
数学 | 4区 | PHYSICS, MATHEMATICAL 物理:数学物理 STATISTICS & PROBABILITY 统计学与概率论 | 4区 4区 | 否 | 否 |
JCR分区等级 | JCR所属学科 | 分区 | 影响因子 |
Q3 | PHYSICS, MATHEMATICAL | Q3 | 1.209 |
STATISTICS & PROBABILITY | Q3 |
* 请认真填写需求信息,学术顾问24小时内与您取得联系。