防治沥青路面裂缝的成因分析的举措

来源:期刊VIP网所属分类:路桥建设发布时间:2012-06-02浏览:

  一、沥青路面裂缝产生的主要原因

  1、沥青及沥青混合料的性质

  沥青路面所铺筑沥青混合料主要由沥青结合料、粗集料、细集料和矿粉等多种成分组成的复

  合材料。在混合料组成中,由于材料质量的差异和数量的多少,可形成不同的组成结构,表现为不同

  的物理力学性能。沥青和沥青结合料的性质是影响沥青路面温度开裂的最主要原因,沥青混合料的低温劲度是决定沥青路面是否开裂的最根本因素,沥青劲度又是决定沥青混合料劲度的关键。在沥青性能指标中,影响更大的是温度敏感性,温度敏感性大的沥青更容易开裂。

  2、基层材料的性质

  基层材料的收缩性愈小,面层裂缝愈小。基层上有透层油以加强与面层的粘结对抗开裂是有好

  处的,基层材料种类对沥青面层的裂缝率有明显影响。

  a.干燥收缩开裂。主要是由于混合料失去水分引起的,混合料中游离水分的减少缩小了颗粒间的空隙。

  b.低温收缩开裂。半刚性基层多在高温夏季和常温时施工成型,入冬后温度骤降,混合料遇冷收缩,在收缩过程中受到下层的约束产生收缩拉应力。如果收缩应力大于当时的极限抗拉强度时,就会产生温度收缩裂缝,温差越大,温度变化越快,则约束越大,混合料就容易开裂。

  3、疲劳开裂

  它是指路面在正常使用情况下,由行车荷载的多次反复作用引起的。沥青结构承受车轮荷载的反复弯曲作用,结构层底面产生拉应变(或拉应力)值超过疲劳强度时,底面便开裂,并逐渐向表面发展。经水硬性结合料稳定而形成的整体基层也会产生出疲劳开裂,甚至导致面层破坏。这种开裂开始大都是形成细而短的横向开裂,继而逐渐扩展成网状,开裂的宽度和范围不断扩大。

  4、低温收缩开裂

  沥青路面在低温时强度虽增大,但其变形能力却因刚性增大而降低。但气温下降特别是急骤降温时,沥青面层受基层的约束而不能收缩,产生很大的温度应力,当累计温度应力超过沥青面层某一薄弱点(或面)的混合料的抗拉强度,路面便发生开裂。这种开裂一般为横向间隔性裂缝,严重时才发展为纵向裂缝。这些裂缝从表层开始向下逐渐延伸,并形成对应裂缝。

  5、路基的破坏所引起的裂缝

  由于路基压实不均匀、路基稳定性差等原因,同时在自重和重载车的作用下,地基产生不均匀沉降使路基发生滑动,将路面拉裂,出现裂缝,通常为纵向裂缝。另外由于施工缝压实度不足,也容易产生裂缝,继续发展会成为翻浆。

  6、设计原因

  我国沥青路面的真正开发、研究及大规模设计、施工,还是近10多年伴随着高速公路建设而发展起来的。因此,还有不少设计问题有待研究;文献也有待于结合工程实践不断完善。设计问题主要如下:

  a.结构设计不合理。如基层厚度不够,面层分层及材料配合比设计不当,面层厚度不合理。

  b.路面、基层、底基层排水设计考虑不周。

  c.路面所处段土质和水文情况与实际出入大,使得路面设计参数不符合实际。

  7、施工原因

  a.软土地基施工。在含水量较高、强度低、孔隙比大、压缩性高的软弱土层即软土上修筑路基,

  若处理不当,往往会发生路基失稳、过量沉陷和不均匀沉降,路面产生纵向裂缝,导致公路破坏或不

  能正常使用。

  b.路基压实度不足。路基压实是路基施工过程中的重要工序,亦是提高路基路面强度与稳定性技术措施之一。压实的目的在于使土粒重新组合,彼此挤紧,孔隙缩小,土的密度提高,形成密实整体,最终导致强度增加,稳定性提高。由于路基局部路段压实度不足,会导致公路路面出现纵向裂缝和横向裂缝。

  c.路面基层施工质量低劣。由于抢工期、赶进度,造成料源紧缺,原材料质量难以保证,不能按照施工规范的要求施工。半刚性基层没有合理的龄期,放松对工程质量的控制,使得基层和底基层质量低劣,造成基层网裂破坏, 反射到面层,面层出现网裂。在龄期不足的情况下,由于摊铺机和重型运料车辆的碾压并转弯,底面层施工时用振动压路机碾压,这都会破坏水泥水化、硬化已形成的初期强度。

  d.沥青面层集料离析。沥青面层集料大小颗粒离析局部粗集料偏多,细集料偏少;不易压实。矿料与沥青的粘结力小,抗剪强度低,容易出现龟裂和松散。

  二、探索沥青路面裂缝的防治

  延缓和减轻半刚性基层沥青混凝土面层的荷载型裂缝和非荷载型裂缝,可采用两大类方法:

  一是在施工期间就采用相应的预防裂缝或处理措施,二是在维修养护延缓和减轻半刚性基层沥青混凝土面层的荷载型裂缝和非荷载型裂缝,可采用两大类方法:一是在施工期间就采用相应的预防裂缝或处理措施,二是在维修养护类方法。仅从半刚性基层沥青路面裂逢的预防或处理方面进行阐述。

  1.提高路基工作区的强度和稳定性

  路基是路面的基础,路基工作区又是路基经受行车荷载影响较大的深度区域该深度区域具有

  足够的强度和整体稳定性对保证路面结构的强度和稳定性极为重要,否则将产生不均匀沉降使路面发生开裂。因此,必须采取有效措施处理好影响路基工作区的稳定性和强度的关键环节。

  a.路基工作区的强度主要是在填筑过程中形成的。必须严格控制路基的填筑工艺,确保路基强度。填筑材料首选石、砾、砂类土,其次选用含砾、砂低液限粘土再次选用低液限粘土。粉质土和有机土不能用于填筑路。面对当前高速公路超载现象十分普遍的情况下,建议在路基施工时对路基工作区的控制深度最好是大于路基工作区的设计深度,以防患于未然。

  b.压实度是反映路基强度的重要指标,也是提高路基强度和稳定性的最经济、最有效的技术措施,施工中必须严格检测控制。使其达到规定值。填土层的厚度对压实度有直接的影响,施工中要插杆挂线,每层的松铺厚度不应大于30 cm。检测压实度试坑要打到下一层顶面,凡是检测结果达不到规定值的要加压处理,或推除重填。

  c.降低地下水位是提高路基强度的重要措施。路面底以下80 cm路床是路基的关键部位,它直接承受和吸收路面的扩散应力,要有足够的强度和稳定性。当开挖后发现底下渗水,不论流量大小都要处理。填方地段要采用较好的材料填筑,土质差的地段要进行换填处理,确保其强度和稳定性。

  2.基层应有合理厚度及修筑防裂路面

  当基层厚度增加时,其承载能力也迅速增加,试验证明,半刚性基层厚度由10 cm增加到25 cm

  时,其承载力提高为原来的3倍。研究表明,面层反射裂缝明显地受沥青面层厚度的影响,厚度超过

  15.0 cm的面层可以有效的防止受拉疲劳所产生的裂缝,还可以降低车辆荷载引起的剪应力。国外

  资料介绍。在贫混凝土上铺筑10.0 cm的沥青面层时,在形成反射裂缝前可累积通过标准轴载10×10次。如果沥青面层加厚到15.0 cm,则可通过20×10次。如沥青面层加厚到17.5 cm则可放心使用。

  3.设置应力吸收层

  a.在基层与面层之间铺橡胶沥青中间层、预制织物膜带条、土工织物或土工格栅中间层、低粘度沥青混凝土层等均匀应力吸收层。

  b.采用应力吸收薄膜,对减缓反射裂缝的产生与扩展有明显的效果,可使裂缝处相对位移产生的应力传到面层时大为减少,明显降低应力强度因子。而吸收薄膜的弹性模薰越低,防裂效果越好。可见应力薄膜应选用低模量高韧性、大变形率的材料为好。就目前常用的材料而言,土工织物与沥青橡胶薄膜的弹性模量都较低,变形率较大。不存在低温脆裂问题,效果更佳。

  c.用土工格栅加筋沥青路面的主要功能,是控制车辙、反射裂缝和疲劳裂缝,不同类型格栅性能显著不同。

  d.橡胶沥青吸收膜,是使用废橡胶磨细的粉与热沥青搅拌后.施于面层中间,形成一薄膜或与砂石成一薄层。有试验结果表明,此应力吸收层在面层中间效果最佳。

  e.新铺半刚性基层的预开裂技术在半刚性基层上锯缝,即在结构层碾压前切割一条缝直到层底。缝宽为0.5 cm,内填沥青砂或沥青乳液.随即将切缝快速封闭。然后以正常方式碾压该层。其目的就是预先制造更直、更多规则问距的裂缝(通常问距为2~3 in),这样它比自然裂缝更细、裂缝位移更小,从而避免裂缝边缘的快速恶化或减缓裂缝贯穿沥青层。

  4.施工控制裂缝发生

  a.在施工方面,控制半刚性基层碾压时的含水量为最佳含水量的0.9倍,压实度达到规范要求,碾压完成后要及时保湿养护,防止基层干晒,养护结束后,立即喷洒沥青乳液,做成透层或粘层,然后尽快铺沥青面层。

  b.制备沥青混合料时控制好加热时间和加热温度,不使沥青老化、加强碾压,使沥青混合料达到规定的压实度,也可减少反射裂缝。

  c.为了减少沥青面层由于半刚性基层的收缩裂缝而产生反射裂缝或对应裂缝.应尽可能采取有效措施来减少半刚性基层本身的收缩裂缝。

  三、总结

  公路铺设沥青面层前,采取裂缝预防措施和处理技术可以大大减少路面裂缝的出现。这种思路和方法是强调于道路建设初期采取措施阻止裂缝的形成。或通过选择道路结构、技术或材料处理已出现的裂缝,这将减少裂缝或根本不出现裂缝,或者使得原有的或不可避免的裂缝活性大大降低。

期刊VIP网,您身边的高端学术顾问

文章名称: 防治沥青路面裂缝的成因分析的举措

文章地址: http://www.qikanvip.com/luqiaojianshe/2083.html