国内外石墨烯前沿应用研究进展

来源:期刊VIP网所属分类:综合论文发布时间:2020-01-02浏览:

  石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,是人类目前已知的强度最高的物质。自2004年由英国曼彻斯特大学2位科学家(Andre Geim和Konstantin Novoselov)首次制备出后,石墨烯引起了科学界的广泛关注,被认为是一种影响未来的革命性的材料。石墨烯在各个领域中的应用都涉及到它的导电性能和机械性能。石墨烯应用广泛,在应用中可以和其他物质组合,以实现更好的性能。本文从新能源电池、生物医学领域、海水淡化、光崔化等角度介绍石墨烯的研究进展情况。

材料工程类论文

  1 新能源电池

  1.1 导电添加剂及电极复合材料

  石墨烯材料具有良好的导电性,易加工成薄膜,将石墨烯作为导电添加剂加入到锂离子电池正极中,能够大幅度提升电池导电率,进而提高电化学性能。作为负极材料可提供给锂离子可逆的存储空间,提高容量和快速充放电。例如,在二氧化锡(一种锂离子电池负极材料)的表面包覆石墨烯材料,可以有效缓解电池充放电过程中产生的体积膨胀问题,提高容量和循环的稳定性[1]。硅纳米材料与石墨烯材料的复合材料比一般的导电剂性能更好,减少了多次循环的损耗,降低了成本,其循环可逆比容量大幅提升[2]。日本电器公司Cheng Qian团队研制出呈蜂窝状的多孔石墨烯海绵,将其用作锂离子正负电极的导电添加剂时能够有效提高电池电极的电子传导率,降低活性物质的电荷转移电阻,提升电池倍率性能和循环[3]。石墨烯材料是导电添加剂材料的重要研究方向。

  将石墨烯导电剂和具有更高导电性的碳材料组成复合导电剂,能够使导电剂更充分地接触活性物质,可从不同维度上构建协同导电网络,更好地改善正极性能[4]。山东大学Jiang Rongyan等人在二氧化锰(MnO2)基电极材料中加入质量分数为5%和10%的炭黑与石墨烯后,显著提升了电极材料的性能[5]。清华大学研究团队利用质量分数为1%Super-P(SP)和质量分数为0.2%的石墨烯纳米片(GN)作为二元导电剂,在钴酸锂(LiCoO2)电极中构建有效的导电网络,提升电池倍率性能和循环,优于市场上含有3%SP的电池,进一步论证了GN添加剂用于高性能锂离子锂电池的商业潜力[6]。

  1.2 集流体

  集流体是电池电芯的重要组成部分,良好的集流体需要有宏观尺寸、独立自支撑、稳定性好、导电导热性能好、成本低等优势。石墨烯材料的高导电性和高柔韧性使其非常适合作为柔性储能器件。早在2012年,中国科学院金属研究所就用三维联通的石墨烯网络取代金属集流体,作为电池中的集流体[7]。Ruoff课题组将泡沫石墨烯作为集流体,并应用在锂离子电池中。之后泡沫石墨烯被用作各类锂离子电池的集流体。石墨烯海绵也是一类可以用作电池集流体的三维碳材料,具有良好的机械性能和导电率[8]。

  2 生物医学领域

  2.1 生物医学传感器

  在生物医学领域,石墨烯的研究主要是关注:①用于生物分子检测的氧化石墨烯生物探测器设备的研发;②氧化石墨烯的抗菌作用、石墨烯生物安全性以及毒性作用机理等研究;③石墨烯在生物光热治疗、光储存方面的研究[9]。生物医学传感器是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。墨尔本大学研究团队设计了一种基于石墨烯的热电传感装置。该装置首先是构造一个边缘为氢钝化的曲折的石墨烯纳米带,再让石墨烯纳米带的表面接近单个生物分子,从而准确地检测出单个分子[10]。印度CSIR公司Bhatnagar等人设计出一种石墨烯量子点和聚酰胺-胺(PAMAM)纳米复合修饰金电极超敏心肌肌钙蛋白I抗体,用于快速检测人心肌梗死[11]。

  石墨烯是一种很有前景的纳米DNA测序材料,基于石墨烯的传感器可以用于DNA测序,但目前市场规模较小。原理是纳米孔与基于石墨烯的传感器结合起来,让单个DNA分子穿过传感器,从而实现单DNA分子测序[12]。浙江大学梁立军通过对多层石墨烯纳米孔道中对DNA分子进行穿孔行为的研究,发现多层石墨烯对于DNA测序在精度方面优于单层石墨烯[13]。

  2.2 氧化石墨烯的抗菌作用及生物安全性

  由于傳统的抗生素的滥用会造成抗药性问题,抑菌性能减弱,而纳米材料具有独特的结构特性,可以用来制作高效安全的抗菌剂,所以纳米抗菌材料如今得到人们的关注和重视。石墨烯的衍生物如氧化石墨烯在抗菌领域中具有强大的应用潜力。新加坡南洋理工大学Liu Shaobin等人使用原子力显微镜发现了氧化石墨烯(GO)对大肠埃希菌的破坏作用。GO通过包裹此种菌的细胞,阻断了细胞与周围环境的交互,阻止细胞的不断增值,从而造成此种类细胞丧失活性,但氧化石墨烯薄片尺寸较小时,不能有效地将细胞与环境隔离[14]。印度阿利加尔穆斯林大学Kulshrestha等人将氧化石墨烯与锌离子结合制成石墨烯/氧化锌纳米复合物(GZNC),探索了GZNC对变形链球菌致龋特性的潜在影响,发现其对变异链球菌的抗菌作用非常显著,GZNC具有有效抑制变异链球菌生物膜形成的能力[15]。氧化石墨烯的抗菌机理主要有对细菌细胞壁和细胞膜的氧化应激和直接破坏2方面,目前学术界不少人对GO的抗菌性能持怀疑态度,还需要进行更深层次的研究[16]。

  2.3 基因载体

  目前,构建安全有效的基因载体是进行基因治疗的重难点。石墨烯及其衍生物能作为基因载体,主要是因其具有以下性能:①易于进行化学修饰;②可以结合核苷酸;③可以保护核苷酸免于被酶分解;④易于被细胞摄取;⑤低毒性[17]。南京大学Dong Haifeng等人利用石墨烯纳米带(GNR)与聚乙烯亚胺(PEI)的静电作用构建了PEI—GNR基因载体[18]。苏州大学冯良珠通过静电吸附方法有效地将带正电荷的聚乙烯亚胺分子包裹到纳米石墨烯表面,基于石墨烯进行一系列基因载体的构建,构建的碱化氧化石墨烯(NGO)—PEI复合体被证实在细胞水平上具有基因负载能力[19]。加拿大麦吉尔大学Imani Rana和他的团队使用磷脂的聚合物(PL—PEG)和细胞穿透肽(CPP)来改进基于GO纳米载体的稳定性和siRNA转染能力[20]。由于不同石墨烯材料对基因载体的性能的影响不同,需要进行更系统的对比研究,进一步优化对石墨烯基因载体的设计。

  推荐阅读:材料方向2-3分的SCI期刊

期刊VIP网,您身边的高端学术顾问

文章名称: 国内外石墨烯前沿应用研究进展

文章地址: http://www.qikanvip.com/lunwen/zonghelunwen/2020/0102/49999.html