人工智能开发的理念、法律以及政策

来源:期刊VIP网所属分类:综合论文发布时间:2019-10-21浏览:

  内容摘要:当人工智能因深度学习而从他律系统转化为自律系统,特别是在人工智能网络之间的相互作用及其连锁反应不断进行的情况下,黑箱化和失控的风险会不断增大。“透明社会”与“黑箱算法”,这是数据驱动社会的一对根本矛盾,对国家治理方式的改革提出了新的挑战,也提供了新的机遇。为此,如何对人工智能进行适当的、合理的、充分的规制,确立人工智能开发的规则、伦理以及政策就势必成为极其重要并非常紧迫的一项课题。国务院印发的2017年《新一代人工智能发展规划》提出了人工智能发展的中国式制度安排以及九条主要原则,与国际社会已经形成的基本共识是相洽的;但在不同价值取向发生冲突时,怎样决定取舍的元规则和优先顺序还有待进一步明确。为了在甄别和防范风险的同时保护人工智能开发的积极性和创造性,有必要更多地采取软法方式,而不是简单地提高硬法的惩戒力度。

  关键词:数字驱动 风险社会 人工智能网络化 软法与硬法 数据格式标准化

人工智能论文

  《模式识别与人工智能》杂志级别:北大核心 科技统计源核心 CSCD,主办单位:中华医学会,周期:月刊,国内统一刊号:11-2338/R。

  前言:人工智能的网络化与互联互通

  “走得太快了,灵魂跟不上”——这是一个游牧部族的古训,也可以用来描述人工智能开发在中国突飞猛进却隐患频仍、局部失序的现状。〔1 〕

  从自动驾驶的汽车到机器人运营的酒店,从电脑量刑到高频度金融交易,人工智能已经渗透到经济、政治、社会生活的各个方面,各种新奇事物层出不穷。〔2 〕但是,对由此产生的风险以及必要的对策和规制方式,我们还缺乏足够的认识和深入研讨。人工智能的开发和利用大都还处于高速增长阶段,相关的制度条件尚不完备,在很多重要方面还没有制定明确的、适当的、统一的伦理标准、法律原则、规则、规格以及政策。我们不能让这样的事态长期持续下去,否则将留下严重的后患。2017年7月21日由国务院印发的《新一代人工智能发展规划》已经指出研究相关法律问题和建立问责制度的必要性,提出了一些重要举措。当然,人工智能开发的具体规制方式和规范内容还有待进一步充实、完善。

  实际上,艾萨克·阿西莫夫早在1942年发表的科幻短篇小说《转圈跑》中,就曾经提出了关于防止机器人失控的三大定律,即机器人不得伤害人或者对人受到伤害袖手旁观;机器人必须服从人的指令,除非该指令危害到人;在遵循上述两条定律的前提条件下,机器人必须保护自己。〔3 〕后来,为了避免允许机器人劫法场之类的逻辑漏洞,他在《机器人与帝国》中又追加了一条零定律:“机器人不得加害于人类整体或者因为坐视危机而加害人类整体”。〔4 〕这些富于灵感和远见的主张为人工智能开发的规制展现了基本思路和雏形,对后来的制度设计产生了深刻影响,但却不能充分反映当今社会的崭新状况和需求。

  为了正确把握人工智能在全世界的发展趋势以及问题群,我们首先需要对产业革命的进程进行简单的回顾。

  迄今为止,人类社会经历了四次重大产业革命,采取了不同的基本生产方式。首先是机械化生产方式,由蒸汽机和纺织机的发明而启动,从18世纪后期持续到19世纪前期。其次是电气化生产方式,因电力和石油以及高度分工引发,从19世纪后期持续到20世纪前期。接着以产业机器人的研发为契机,〔5 〕从20世纪60年代开始出现了自动化生产方式,其驱动力量是半导体、电脑以及互联网。就在这个阶段,人工智能的研究开始出现几经起伏的热潮。

  初级的人工智能只不过是装载了控制程序的家用电器,例如具有自动调节功能的洗衣机、冰箱以及电动剃须刀。较高级的人工智能则是装载了知识数据库的推理和探索系统,例如象棋程序、扫地机器人以及对话软件。更高级的人工智能搭载检索引擎,可以按照既定算法进行机械学习,包括各种实用的专家系统。〔6 〕现在我们通常所说的人工智能大多数就是指具有机械学习功能的计算机信息处理系统。

  至此我们迎来了大数据时代,新的产业革命条件也开始日渐成熟。〔7 〕21世纪初由万物互联互通、大数据、人工智能引发的智网化生产方式,可谓第四次产业革命。正在进行中的这次产业社会的结构转型是以数据驱动和人工智能网络化为基本特征的。其主要构成因素有如下三项。

  第一,物联网(简称IOT)。物联网导致数据的生成、流通、积蓄并不断增大,通过数据合作实现最合理化的供应链,可以针对顾客个人需求进行产品和服务的创新。

  第二,由物联网形成和积累而成的大数据。对物联网而言,大数据的收集和运用是关键,而大数据具有经济价值,甚至被认为是一种新型通货。大数据也使得个人生活状态变得非常透明化,甚至可以说我们面对的是一个极端化的“透明社会”。

  第三,人工智能。没有人工智能,大数据的收集和运用都不可能实现,而基于大数据的机械学习和深度学习又给人工智能带来质变,可以不斷开发新产品、新服务,并且大幅度提高效率和质量。

  这三种因素互相作用、相辅相成,推动人工智能网络化程度不断加深,促进现实空间与虚拟空间之间互动和反馈的关系不断增殖,形成一种具备控制力的信息实体交融系统(简称CPS)。在这样的背景下,以多伦多大学开发的图像识别系统Super Vision以及谷歌的猫脸识别项目为标志,人工智能也从2012年开始进入了能够自己进行“特征表现学习”(深度学习)的崭新时代,为历史性突破提供了重要契机。〔8 〕

  在人工智能的网络化和万物互联互通的时代,阿西莫夫关于防止机器人失控的三大定律和零定律就显得有些捉襟见肘了。从控制程序、知识数据库到检索引擎,人工智能都必须按照人给出的指令或算法来运行。在机械学习阶段,即便有非常庞大的数据,人工智能也不会自动学习,需要有人来提供数据的特征量和规格化方式才能进行学习和预测;通过机械学习,人工智能可以提供更高的精确度,但却很难对复杂的、模糊的问题进行判断。然而当机械学习的数据输入不间断地高速进行时,对输出的预测就会变得非常困难。而在深度学习的场合,人工智能系统不仅按照算法进行数据处理,还采取多层次脑神经网络的模型和方法,能从大数据中发现和提取特征量,揭示迄今为止未知的问题、样式、结构以及原理,从而具有更高的自主性,因而更类似具有条件反射能力的动物或者自由意志的人。

期刊VIP网,您身边的高端学术顾问

文章名称: 人工智能开发的理念、法律以及政策

文章地址: http://www.qikanvip.com/lunwen/zonghelunwen/2019/1021/49027.html