来源:期刊VIP网所属分类:综合论文发布时间:2016-08-22浏览:次
【摘 要】 投资决策的正误,既取决于体制因素,取决于决策理念,也取决于预测水平,还取决于决策技术等等。如果不能快速、准确地作出决策,那么决策的方法再科学、合理,也难以得到普遍应用,而要快速、准确地作出决策,就必须利用计算机。本文仅就决策技术中的计算机应用问题——Excel在投资决策中的应用问题略陈管见。
【关键词】 Excel,投资决策,净现值,内涵报酬率,资本成本,资本限额,线性规划
在财务工作中,投资决策是最重要的决策。按照MM理论,企业价值取决于企业的投资决策。一个企业的兴衰存亡,往往与投资的正确与否息息相关。《北京人在纽约》中的王启明之所以破产,《大世界风云》中的黄楚九之所以失败,都是因为投资的失误。文艺作品中的情形如此,现实生活中的情况更是如此。
一、利用函数计算净现值和内涵报酬率
(一)利用NPV函数计算净现值
投资决策中的折现法优于非折现法,折现法中又以净现值法和内涵报酬率法最为普遍。而净现值和内涵报酬率都可以利用Excel函数解决。
1.NPV函数
在Excel中,可以利用PV函数计算现值进而计算净现值,也可以利用NPV函数直接计算净现值。其中PV函数既可以计算一次性流量的现值,也可以计算多次性相同流量(即年金)的现值;而NPV函数可以计算多次性相同或不相同流量的现值。显然,在投资决策中计算净现值应该利用NPV函数。
假定折现率和现金流量资料如表1:
利用NPV函数计算净现值的具体做法是:在目标单元格单击菜单中“∑”右侧的下拉菜单,选择“其他函数”单击,然后在出现的“插入函数”对话框中选择“财务类别”单击,再找到“NPV”选项 ,单击“确定”后,出现一个对话框。此时可根据其中的提示在“rate”一栏中填入折现率;也可单击此栏后的红色箭头,显现出工作表,选定折现率的单元格(10%),再单击红色箭头回到对话框,单击“value”一栏后的红色箭头,显现出工作表,拖动鼠标选定工作表中的第二列(现金流量),单击红色箭头回到对话框,单击“确定”,出现结果9 928.48,如图1。
需要特别注意的是,9 928.48并不是最终结果。因为利用NPV函数计算净现值,一定要注意时点,即折现后的具体时点。
时点的确定,可分一次性投资和多次性投资分别说明。对于一次性投资来说,要看其是否是投资起始年。如果不是投资起始年,一定要折算为投资起始年。对于多次性投资来说,一般要换算为建成待投产时。
2.一次性投资净现值的计算
在一次性投资的情况下,如果所选数据包括投资额,则NPV所计算的净现值是投资时(假定为0年)前1年(即-1年)的净现值。因而还要乘一个1年期终值系数即(1+利率),从而求得投资起始年的净现值。如果所选数据不包括投资额,则可以在计算各年流入现值总额后,再减去投资额。
因而,上述结果9 928.48还要乘以(1+10%),最后在对话框点击“确定”,在目标单元格内就会出现A方案的净现值10 921。B方案可用同样的方法操作。如表2:
顺便指出,有人并未如此计算,因而导致结果不正确。例如:某项目投资期为6年,各年末净现金流量分别为-500、200、200、200、200、100,该项目基准收益率为10%,要求通过NPV法分析该项目是否可行。其做法如下:在Rate栏内输入折现率0.1,在Value栏内输入一组净现金流量,并用逗号隔开-500,200,200,200,200,
100,也可单击红色箭头处,从Excel工作簿里选取数据,然后,从该对话框里直接读取计算结果“计算结果=178.2411105”,或者点击“确定”,将NPV的计算结果放到Excel工作簿的任一单元格内。
笔者认为,这里存在两个问题:第一,根据其提供的现金流量资料,该投资的投资期不是6年,而是5年;第二,其净现值不是178.24,而是196.07。178.24乃是负1年(即投资开始前1年)的净现值,而不是投资开始时(即0年)的净现值。
为了说明该结果的准确性,也可以利用PV函数逐年计算现值,最后求和来验证,如表3。
由于计算结果的错误,很可能导致该投资项目的放弃,或者在两个备选方案中错误地弃此选彼。因此,在应用现成函数计算时,不仅要看到效率高的一面,而且要千万注意计算结果的准确性。
3.多次性投资净现值的计算
某些大型项目,往往多年建成,如京九铁路、长江三峡工程,这就是多次性投资的情况。对于多次性投资,在计算净现值时,有三个问题值得注意:一是涉及投资期与现金流量时点问题;二是涉及折现点选择问题;三是涉及两个折现率问题。
(1)投资期与现金流量时点问题
如果说一项投资3年建成,建成后不需要铺底资金,寿命周期5年,则其现金流量图应如图2所示。
如果建成后需要铺底资金,则在0年处会存在现金流出。不论如何,都不应在第1年处产生现金流入。但是不少著作却在0年处产生了现金流入,显然是不准确的。因为不可能刚刚建成就马上有现金流入,也有的著作在0年有现金流出,而-3年却没有现金流出,这显然不是3年建设期,而是2年。0年的流出,只应理解为发生的铺底资金。
鉴于现金流出在期初,现金流入在期末的一般假定,多次性投资现金流量图的描述在原点(0年)可以有空点,也可以有流出,但不大可能有流入(即使是试生产也要在建成之后)。
(2)折现点选择问题
多次性投资项目的折现点如何选择,也是一个值得探讨的问题。总的看来,无非两个,一是建成投产时;二是开始投资时。从理论上说,二者均无不可。但由于投资决策需要计算固定资产折旧,而固定资产折旧要根据建成的固定资产价值计算提取。由于利息的资本化,故只有预计在固定资产建成时才能合理确定固定资产价值,因此,笔者认为折现点应该选择在建成投产时,即0年比较合理。
(3)两个折现率问题
一项多次性投资的项目,需要将各个阶段的现金流量换算为折现点的现值。这对于初始投资时点来说,实际是终值。由于投资的必要报酬率和建设阶段的融资成本往往不同,这就可能出现两个折现率的问题。
期刊VIP网,您身边的高端学术顾问
文章名称: Excel投资决策应用效果探究
文章地址: http://www.qikanvip.com/lunwen/zonghelunwen/2014/0123/11438.html