来源:期刊VIP网所属分类:计算机应用发布时间:2013-11-22浏览:次
摘 要:量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础和原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。自从计算机的出现,人类文明发生了天翻地覆的变化。科学生产技术也发生了奇迹般的发展。本文从什么是计算说起,通过对计算机的发展历史和人类对计算本质认识的回顾,提出量子计算系统的发展和成熟。文章发表在《计算技术与自动化》上,是电子期刊发表范文,供同行参考。
关键词:计算科学;计算工具;图灵模型;量子计算
量子的重叠与牵连原理产生了巨大的计算能力。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数,因为每一个量子比特可表示两个值。如果有更多量子比特的话,计算能力就呈指数级提高。
1 计算的本质
计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。
2 近代的科学发展促进了计算工具的发展
在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。
3 在电子计算机和信息技术高速发展
因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。
4 “摩尔定律”与“计算的极限”
人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。
电子期刊征稿启事:《计算技术与自动化》坚持理论与实践相结合的方针,跟踪世界最新科技动态,报道国内外的新技术、新产品、新装置、新工艺 、新方法等理论性、实用性强的技术成果和研究方法,以其前沿的报道和新颖实用的内容,迅速向社会各界传递技术信息,为企业和科研院所架起联系的纽带和桥梁。
哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。
也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。
5 量子计算最初思想的提出
20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了。
不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。
6 量子计算中的神谕
人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。
无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。
量子位(qubit)是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示,它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中,信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(sup
er posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态,“ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或 “ 1” 态.任何两态的量子系统都可用来实现量子位,例如氢原子中的电子的基态(gro und state)和第 1 激发态(f irstex cited state)、 质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、 圆偏振光的左旋和右旋等。
电子期刊论文投稿须知:《计算技术与自动化》创办于1982年,季刊,大16开,邮发代号:42-277。本刊严格按照党和国家各项方针政策和办刊宗旨,坚持科学技术为经济建设服务、为大众服务的方针而创立的专业性很强的科技期刊。主要面向高等院校、科研院所、工业企业等部门的专家学者和科研技术人员发表学术论文。其内容涵盖计算方法、工业控制及自动化应用、计算机软硬件开发与应用的理论研究和科研成果等方面的文章。
期刊VIP网,您身边的高端学术顾问
文章名称: 电子期刊发表启事计算科学量子计算系统发展与成熟
文章地址: http://www.qikanvip.com/jisuanjiyingyong/10104.html