来源:期刊VIP网所属分类:房地产发布时间:2020-04-11浏览:次
本文通过网络爬虫技术获取上海市综合排名前200的热门景点作为研究对象,利用GIS技术分析其分布情况,通过最近邻分析法、地理集中指数、Ripley’s K函数进行定量分析,分析总结上海市热门旅游景点的空间结构特征。最终得出:①上海市热门旅游景点在空间上呈现出明显的聚集分布,最近邻分析得到的ANN为-0.48,Z值为-14.06;②计算得出其地理集中指数等于16.98,景点分布集中,且黄浦区、浦东新区所占比重较大;③通过Ripley’s K函数来描述热门旅游景点在不同空间尺度上的分布特征,结果表明在0~27km的空间尺度上,景点都呈聚集分布。
推荐阅读:旅游经济与区域文化的协调互动分析
引言
分析研究旅游景点的空间分布特征,了解其空间分布情况,有利于为相关部门的旅游规划提出建设性意见,实现旅游资源的合理利用与开发,进一步带动区域旅游业发展。现有研究从3个方面研究旅游景点空间分布格局。①空间规划布局研究。周锐等以GIS可视化平台为基础,从土地适宜性方面出发,量化了影响旅游景点选址的因素,提出了新的景点选址分析模型。②空间可达性研究。潘竟虎等针对中国4A级及以上旅游景点的空间可达性和县域单元的整体可达性进行了探究,以GIS技术为辅助,栅格成本加权距离算法为手段结合利用空间关联方法对比了县域可达性的差异性。③空间聚集性和空间可达性综合旅游地形成机制研究。邓华侨在探讨自然地理环境因素等对成都市旅游景點空间布局和可达性所产生的影响基础上总结了其空间特征。目前,研究多表现在宏观尺度,中微观尺度的研究不足,数量很不可观,对于不同类型景点之间的差异对比研究也为数不多。本文从空间分析角度着手,通过GIS空间分析与空间模式识别分析方法对上海市热门旅游景点空间分布状态进行了研究,探究旅游景点空间尺度层面分布格局的内在规律,同时为上海市建设国际旅游城市,制定更加科学的旅游发展规划提供一定的科学理论参考。
一、数据处理与分析
(一)数据来源
本文研究对象为热门旅游景点,旨在比较具有特异性的旅游景点的空间分布差异,所以在数据来源的确定方面通过综合比较几种常用旅游类门户网站排名,最终确定数据来源。综合对比分析了目前国内常用的几种旅游类服务网站的用户访问量、用户覆盖率等信息发现,去哪儿网的市场影响力更大,用户覆盖范围广、发展更全面,最终选取去哪儿网作为上海市热门旅游景点数据的数据来源。通过Python网络爬虫从去哪儿网上获取人气和点评量综合排名前200的热门旅游景点,并根据旅游景点分类标准和区域特色,将景点分为6种类型:园林观赏类、历史文化类、艺术欣赏类、科技文化类、休闲购物类、海派文化类。
(二)旅游景点分布特征分析
上海市区位优越、人口密集,每年旅游人口数众多。由于区域经济发展差异以及地铁公共交通布局等关系,旅游景点的分布整体呈现中心聚集,但不同类型的景点分布情况各有差异。
1.基于最近邻分析的空间集聚性分析
最近邻分析是将区域中点的分布相比较于同一区域中点的理论意义的随机分布进行的。这个方法源于植物生态学定义的一个间距指数,用于比较观测到的一个区域的植物聚落图式与随机分布之间的异同,Clark和Evans于1954年提出最近邻分析这一理论概念,King在1969年将这种方法引入城镇聚落的空间分布分析中。后来NNA作为一种新空间分析方法被引用其他学科,例如人文地理、城市地理学。理论上,假设所有的点完全随机分布,那么其密度倒数值的一半等同于其平均距离。最近邻指数(R尺度)由结果值与分布图观测值的比值得到。
最近邻分析的过程主要为:首先,测算出区域内所有要素的质心和其最近距离要素的质心位置之间的距离;其次,计算总体的平均值。假如距离值小于随机状况下的平均距离,则为聚类要素;反之如果这个距离值大于随机模式中的平均值,就看作分散要素。
平均最近邻比率计算公式为:
ANN=Do/De(1)
式中,Do为实测要素与其最近邻要素质心距离的平均值:
Do=∑di/n(2)
De为随机分布模式下的距离期望值:
De=0.5/sqrt(n1/A)(3)
上面公式中,di表示要素i与其最邻近要素之间的距离,n为研究区域内所有点要素总量,n1表示各类景点的数量,A为所在研究区域的面积。均匀分布情况下ANN大于1;随机分布状况下ANN接近于1;聚集分布模式下则ANN小于1。为了更好地反映出实际观测的平均距离与期望值的差异程度,一般用正态分布进行检验,通过公式(4)(5)可以得到Z值及其置信水平:
Z值计算公式为:
Z=(Do-De)/SE(4)
SE计算公式为:
SE=0.26136/sqrt(n12/A)(5)
式中Z值为负且越小,则越能反映出点分布呈聚集状态,反之则为离散分布。利用Arcgis10.2软件导入热门旅游景点shp类型的数据,并利用ArcToolBox工具箱中的分析模式进行相关分析,最终得到各类热门旅游景点的ANN,并根据相关公式检验其显著性,结果见表1。
由表1可知,上海市所有景点的ANN均不超过1,Z值为-14.06,呈现出显著聚集状态。其中Z值小于-2.58的仅有园林观赏类,说明该类景点在空间上呈现出显著聚集状态;艺术欣赏类、历史文化类以及科技文化类3类景点ANN接近(分别为0.88、0.87、0.85),Z值均小于-1,聚集分布的显著程度不高,为聚集-随机分布;休闲购物类ANN为1.00(p=0.97)、海派文化类景点ANN为0.94(p=0.49),且Z值分别为-0.38、-0.69,更加趋近于0,说明景点呈随机分布状态。
2.地理集中指数
地理集中指数能够衡量研究对象的集中程度。如果地理集中指数G值越大,说明旅游景点分布越不平衡;反之,地理集中指数越小说明景点分布均衡化程度高。
期刊VIP网,您身边的高端学术顾问
文章名称: 上海热门旅游景点空间分布特征研究
文章地址: http://www.qikanvip.com/fangdichan/51184.html